

NASA Instrument Cost Model NICM

Telescope Cost Estimating

Hamid Habib-Agahi Joe Mrozinski

NASA Cost Symposium, August 2014
Jet Propulsion Laboratory
California Institute of Technology

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

What is a Telescope?

- The term TELESCOPE
- There are two camps of telescope people:
 - Camp 1 uses the term telescope to mean the actual "tube" itself, and considers the telescope to be independent of the detector subsystem sitting behind it, called the "backend"
 - Example: Hubble
 - Camp 2 uses the term telescope to mean the entire package:
 tube + backend = telescope
 - Example: HiRISE on MRO
- Summary:
 - Camp 1: Telescope = Tube
 - Camp 2: Telescope = Tube + backend

What is an Instrument?

- The term INSTRUMENT
 - How does the term *telescope* line up with the term *instrument*?
 - In NICM:

Camp 1: Telescope = Tube ≠ Instrument

Camp 2: Telescope = Tube + Backend = Instrument

This thus creates a 3rd camp as well:

Camp 3: Camp 2 – Tube = Backend = Instrument!

Cost Estimating for Camps 1-3

• Camp 2 instrument are represented/supported by NICM, but only for smaller apertures

• Camp 3 instruments are represented/supported by NICM, but only for much larger apertures.

• Camp 1 is not supported by NICM VI: but they will be in NICM VII!

Camps Divided by Apertures

- Where does this bifurcation point between small and large apertures occur?
 - Within NICM, telescope+backend (Camp 2) instruments are typically of apertures of < 0.25 m
 - For missions requiring > 0.25 m or greater apertures, the instruments in NICM typically represent the backend only (Camp 3).
- But what if a user wants the cost of just the telescope frontend (Camp 1)?

Telescope Cost Model's by Camp and Aperture

		Aperture Bins			
		< 0.25 m	0.25 m to 1.5 m	> 1.5 m	
Camp 1	Tube Only	MIT	NICM-T	MSFC	
Camp 2	Tube + Backend	NICM	~NICM + NICM-T	~MSFC+NICM	
Camp 3	Backend Only	~ NICM-MIT	NICM	NICM	

- MSFC = Marshall Large Telescope cost model
- MIT = MIT small telescope cost model
- NICM-T = The new NICM Telescope CER for apertures 0.25 m to 1.5 m

NICM-T: Telescope Data

	Aperture (m)	Band	mass (kg)	Cost \$M FY04
FUSE*	39	Infrared	130.9	9
GALEX	50	Infrared	98.8	16
IRAS	50	Infrared	130	31
WIRE	30	Infrared	85.3	11
Spitzer	85	Ultraviolet	133.8	57
WISE	40	Ultraviolet	110.6	80
HiRISE**	50	Infrared	39.7	14
Kepler	140	Infrared	336.1	67

*FUSE had 4 identical telescopes. Numbers here are for 1.

**HiRISE was actually developed as a Camp 2 instrument. The

NICM team was able to separate out the telescope mass and cost.

NICM-T: CER Candidate 1

- Cost $[FY04$K] = 149.38*(Diameter[cm])^{1.271}$
- $R^2 = 71\%$, SE = 43%, PE = 52%

NICM-T: CER Candidate 2

- Cost $[FY04$K] = \{49 \text{ Visible/UV}, 95.4 \text{ Infrared}\}*(Diameter[cm])^{1.467}$
- $R^2 = 93\%$, SE = 23%, PE = 37%

- Green: Vis/UV. Purple: IR

NICM-T CERs, Side-by-side Comparisons

- Candidate 1:
 - Cost $[FY04$K] = 149.38*(Diameter[cm])^{1.271}$
 - $R^2 = 71\%$, SE = 43%, PE = 52%
- Candidate 2:
 - Cost $[FY04$K] = \{49 \text{ Visible/UV}, 95.4 \text{ Infrared}\}*(Diameter[cm])^{1.467}$
 - $R^2 = 93\%$, SE = 23%, PE = 37%

NICM-T Conclusions and Next Steps

Next Steps

- Collect more telescope data
- Recalibrate the 2 candidate CERs
- Install best CER into NICM VII for release

• Conclusion:

NICM VII will include a new Telescope CER which will support estimating the cost of a telescope (tube only) for apertures 0.25 cm to 1.5 m, a capability not currently available.